

Super Matrix Solver-MF:

Direct solver based on Multifrontal Method

February 2011

VINAS Co., Ltd.

Project Development Dept.

URL: http://www.vinas.com

VPD-F11007=06(L1) Copyright©2004-2011 VINAS Co., Ltd. All trademarks and trade names in this document are properties of their respective owners.

Super Matrix Solver-MF is direct solver for symmetric/ unsymmetric sparse systems of linear equations that is based on Multifrontal Method (MF).

The solver stably calculates a wide range of sparse linear systems (e.g. matrices with no diagonal dominant, or those with non-symmetric pattern*)

*symmetric element pattern means that the pattern of elements in the matrix is symmetric, such as the location of nonzero-elements; the values of elements do not have to be the same.

- The enhanced ordering algorithm of Super Matrix Solver-MF, which is indicated by the fewer number of fill-ins, allows faster calculation with less memory
- Fill-ins occur when non-zero elements are generated in the zero element portion of the coefficient matrix A.
- When fill-ins occur, the amount of memory use increases, and the amount of calculation also increases.
- The number of fill-ins indicates algorithm improvement: fewer the number of fill-ins, better the performance of direct method.
- It is critical to minimize the number of fill-ins (to keep the sparseness of the original coefficient matrix) for direct method performance.

■ Super Matrix Solver-MF employs combined Nested Dissection – Minimum Degree Ordering algorithm to reduce the number of fill-ins.

 Super Matrix Solver-MF employs Full Pivoting for improving stability of decomposition without increasing the number of fill-ins.
 (c.f. general conventional MF-based algorithms employ Partial Pivoting or No Pivoting)

Super Matrix Solver-MF calculates faster using less memory compared with conventional direct methods.

Due to optimal memory usage in the decomposition phase and low number of fill-ins, *Super Matrix Solver*-MF can operate possibly largest problems for a particular amount of memory.

Super Matrix Solver-MF has the following feature compared with conventional direct method:

Outstanding Calculation Performance

- Fast calculation speeds (optimal performance for 2D/3D problems)*
- Small memory consumption
- Out-of –Core calculation capability
- Storing decomposition results in internal memory/hard disk (for later reuse)
 -Calculates multiple right-hand-side vector *b* with fixed coefficient *A* -Solves equations of slightly different coefficient *A* with iterative method

Easy-to-use Interface

- Few parameters/arguments
- Program package includes product manual/sample programs

*Matrices arising from FD/FE problems on structured/unstructured grids.

Items	Descriptions	Notes
Intended Matrix	Sparse matrices	
Symmetry of Matrix	Calculates both symmetric and asymmetric matrices. Also supports four symmetry types: symmetric,, hermitian,, skew-symmetric and skew-hermitian.	When calculating symmetric matrix, enter the data from either upper-half or lower-half of the matrix only.
Zero Diagonal Elements	Calculates matrices with zero diagonal elements.	
Types of Unknown	Real and Complex Numbers	
Limit on Number of Elements	Depending on OS, the amount of memory a process can use will be limited	
Data Format	Executable modules such as DLL.	No disclosure of the source code.
Parameters	Coefficient matrix A , right-hand-side vector b , upper limit value of memory, etc.	
Solver Integration to Other Programs	Super Matrix Solver-MF may be integrated to the programs that are written in C and Fortran.	Integration to programs that are written in other languages is yet to be confirmed.
Out-of-Core Calculation Capability	Capable of efficiently storing/reading the data for which the amount of memory is insufficient, based on the amount of usable memory. Faster calculation speed compared with simple disk swapping that depends on OS.	

Items	Descriptions	Notes	
Operation Environment Windows, Linux			
Input Data	Coefficient matrix and right-hand-side vector		
Output Data	Solution vector		
Indication of Error	idication of Error Warnings and error messages returned as return value		
Messages	(calculation information, system information, etc).		
Method of Provision	DLL format for Windows; Static library format for Linux and UNIX.	Source code will not be disclosed.	
Attached Materials	Product manual (with explanations about data format, parameters, integration procedures, etc.), sample data, sample program for integrating SMS-MF (C and FORTRAN).		

Estimated Size of Matrix Calculable by Super Matrix Solver-MF

with 1 Gbyte* of actual memory available (for finite element grids of modern topological complexity**):

2D Problems

Not using hard disk: up to 1 million unknowns

Using hard disks: up to 5 million unknowns

<u>3D Problems</u>

Not using hard disk: up to 0.2 million unknowns

Using hard disks: up to 0.8 million unknowns

*1 Gbyte of memory solely available to be used by Super Matrix Solver-MF.

** The limit size can vary several times depending on complexity of particular grid.

Rev A: November 15, 2010

	OS	Recommended Environment	Recommended Compiler	Environment for which operation is noted	Compilers for which operation is noted	Remarks
32-bit machine W	Windows	Windows 2000 Windows XP	 (1)Fortran Compaq Visual Fortran 6.5 and later (2) C / C++ Microsoft Visual Studio 6.0 Microsoft Visual C++ 6.0 and later 		 Intel Fortran 9.0 Intel Fortran 9.1 	
	Linux	Red Hat Enterprise Linux 4 gcc : 3.4.6 glibc : 2.3.4 kernel : 2.6.9	gcc 3.4.6 Intel Fortran 9.0 and later			Environment under which the module might operate: gcc 3.4.6 and later, glibc 2.3.4 and later, kernel 2.6.9 and later
64-bit machine	Windows (AMD64/ EM64T)	Windows XP x64	 (1)Fortran Intel Fortran 9.0 and later (2) C / C++ Microsoft Visual Studio 2005 Microsoft Visual C++ 2005 and later 			
	Linux (AMD64/ EM64T)	Red Hat Enterprise Linux 4 gcc : 3.4.6 glibc : 2.3.4 kernel : 2.6.9	gcc 3.4.6 Intel Fortran 9.0 and later			Environment under which the module might operate: gcc 3.4.6 and later, glibc 2.3.4 and later, kernel 2.6.9 and later

How to call Super Matrix Solver-MF Explanation of Arguments

Standard Call: Obtaining solutions by a single call, which is the standard procedure.

>rtc=smsmfd(u ad, alu, lnt, lnd, b, nd, ns, mtype, inout)

Multiple-step Call:

When the coefficient matrix A is fixed, and only the right-hand-side vector b changes, intermediate steps (inverse matrix) are stored to reassign the changing values of the right-hand-side vector b only.

>rtc=smsmfd_dec(ad, alu, lnt, lnd, nd, ns, mtype, inout) //Decompose

>rtc=smsmfd_calc(x, b, nd , mtype, inout)

//Calculate (fixed A)

>rtc=smsmfd_iter(u ad, alu, lnt, lnd, b, nd, ns, mtype, inout) //Calculate (slightly changed A) >rtc=smsmfd_free() //Delete decomposition results

List of Arguments				
Argument	Туре	Description		
u	real*8	Solution		
ad	real*8	Store the value of diagonals of coefficient matrix A		
alu	real*8	Store the value of non-diagonals of coefficient matrix A		
lnt	integer*4	Store the number of non-diagonals in each row of the coefficient matrix A		
lnd	integer*4	Store the components of columns of the coefficient matrix A		
b	real*8	Right-hand-side vector b		
nd	integer*4	Number of unknowns		
ns	integer*4	Number of non-diagonal and non-zero elements of the coefficient matrix A		
mtype	integer*4	Symmetry type of coefficient matrix A		
inout	integer*4	On/Off switch of Out-of-Core feature		

VPD-F11007=06(L1) Copyright©2004-2011 VINAS Co., Ltd.

11

Comparison of Super Matrix Solver-MF with Other Solution Methods (suppose the Super Matrix Solver-MF's Fill-in = 1)

Sparse LU and Other MF Method were compared based on the fill-in performance, not on actual calculation time. Fill-in performance for Spares LU and Other MF method are published in paper, and therefore the comparison was made on the same fill-in performance. Theoretically, the fewer the number of fill-ins, the faster the calculation speed. SparseLU:http://www.zib.de/visual/projects/par/lulong.en.html

VPD-F11007=06(L1) Copyright©2004-2011 VINAS Co., Ltd.

Application Example

Dr. Haruhiko Kohno Visiting researcher at Massachusetts Institute of Technology (currently visiting researcher at Coventry University in England)

Application field: Applied SMS-MF to research of fluid flow analysis using FCBI (Flow-Condition-Based Interpolation) finite element scheme

Problems:

Cannot employ iterative solvers due to 0 elements of the coefficient matrix.

Too much calculation time and memory usage of conventional direct solvers such as Gaussian elimination method. <u>Feature of SMS-MF:</u> Fast calculation speed, Small memory usage. Able to calculate a 150000-dimension matrix using 1GB-memory.

Re = 10,000

Figure 1: Calculation example (streamline) of 2-dimension stable non-compressed viscosity flow in a square cavity

Figure 2: Calculation example (streamline) of 2-dimension stable non-compressed viscosity flow in a triangle cavity

VPD-F11007=06(L1) Copyright©2004-2011 VINAS Co., Ltd.

Super Matrix Solver-MF software product consists of:

For further information on Super Matrix Solver-MF such as

- •Benchmark Testing (BMT)
- •Evaluation module
- •Other inquiries

Please contact:

VINAS Co., Ltd. Project Development Dept. Kazuya Goto URL http://www.vinas.com E-mail : sms@vinas.com

VPD-F11007=06(L1) Copyright©2004-2011 VINAS Co., Ltd.

