

Super Matrix Solver-BEM(SMS-BEM):

High-Speed Matrix Solver based on Boundary Element Method dedicated for Dense Matrices

February 2011

VINAS Co., Ltd.

Project Development Dept.

URL: http://www.vinas.com

VPD-F11005=06(L1) Copyright©2004-2011 VINAS Co., Ltd. All trademarks and trade names in this document are properties of their respective owners.

www.vinas.com

Special Feature of SMS-BEM

- Dedicated to dense matrices that are generated with boundary element method (BEM).
- Hybrid-Solver with pre-processing based on direct and iterative methods.
- Up to 40 times faster compared with direct method.
- Less memory usage: size of required memory about 1.1 to 1.3 times the size of coefficient matrix A.
- Calculation time increase in squares of the size of coefficient matrix A (c.f. calculation time increase in cubes with direct method)
- Out-of-Core capability with efficient control of Disk I/O
- Adjustable calculation accuracy (iterative method allows for configuration of convergence criteria).

Items	Descriptions	Notes	
Intended Matrix	Dense matrix generated with Boundary Element	Full matirx	
	Method (BEM)		
Types of Unknown	Real (double-precision) and Complex Numbers		
Solution Method	Pre-processing + Iterative Method		
Operation	Windows, Linux	For UNIX environment, please	
Environment		contact VINAS.	
Data Giving Method	 In-Core calculation (with actual memory only): Giving coefficient matrix <i>A</i>, right-hand-side vector <i>b</i> as arguments. The result is also returned as arguments. 	 for small to medium size problems (with fewer than 14,000 unknowns) for large size problems (that 	
Out-of-Core		exceeds 14,000 unknowns	
Capability	 2. Out-of-Core calculation (with actual memory and disk): Dump the coefficient matrix <i>A</i> once into a file before loading the data. Right-hand-side vector <i>b</i> is given as arguments. Results are also returned as arguments. 	(2GB RAM real data)s Calculates 14,000 unknowns with 2GB memory on PC!	
Parameters	1) Target Convergence	1 and 2 must be assigned because	
	2) Number of Iteration	the solution method is based on	
	3) Amount of memory that can be allocated to the	iterative method.	
	solver (in case of Out-of-Core)	Target convergence is specified as relative residual in L2 norm.	

SMS-BEM Summary Specification (2)

Items	Descriptions	Notes	
Other Conditions	 Enter coefficient matrix <i>A</i> as 1D array when giving data as arguments. Dump the data so that the ith column and jth element of the coefficient matrix <i>A</i>, and the kth element of ID array relate as follows: k=(i-1)*n+j (where n is the number of unknown) When reading from a file, enter the data of coefficient matrix <i>A</i> row by row. 	Enter the data row by row in a sequence (enter the elements of the 1 st row, then the 2 nd row, and so forth).	
Data Format	DLL Format, Static Library Format	No disclosure of the source code.	
License Type	Node Lock Type	Available for a fixed machine.	
Memory Requirement Estimation	 For In-Core calculation, memory addition is required that is 0.1 to 0.3 times as large as the size of the coefficient matrix <i>A</i>. (i.e. for the matrix size of <i>S</i>, the size of required memory is 1.1<i>S</i> to 1.3<i>S</i>). Out-of Core calculation with small amount of memory (e.g. 1/10 or smaller the size of coefficient matrix <i>A</i>). However, larger the amount of memory allocated, faster the calculation speed. When the amount of memory allocated is small, the calculation may not converge depending on problems. 	Breakthrough in memory requirement that is only 1.1 to 1.3 times the matrix size!	
Calculation Time	For In-Core calculation, calculation time increase is proportional to the square of the size of coefficient matrix (N^{2} , where N is the number of unknown).	c.f.) calculation time increases in cubes in conventional direct method solver	

4

SMS-BEM Calculation Flow

VPD-F11005=06(L1) Copyright©2004-2011 VINAS Co., Ltd.

Calculation Time (sec.)

SMS-BEM Calculation Example

SMS-BEM Calculation Example

Direct Method

Calculation Time (Min.

Field of Application **Electromagnetic Analysis**

Size of Problem 13,000 unknowns

Calculation Environment CPU: Pentium4 2.4GHz Memory: 2GB

SMS-BEM

VPD-F11005=06(L1) Copyright©2004-2011 VINAS Co., Ltd.

Rev A: November 10, 2010

	OS	Recommended Environment	Recommended Compiler	Environment for which operation is noted	Compilers for which operation is noted	Remarks
32-bit machine	Windows	Windows 2000 Windows XP	 (1)Fortran Intel Fortran 9.1 and later (2) C / C++ language Microsoft Visual Studio 2005 Microsoft Visual C++ 2005 and later 		Intel Fortran 9.0	
	Linux	Red Hat Enterprise Linux 4 gcc : 3.4.6 glibc : 2.3.4 kernel : 2.6.9	gcc 3.4.6 Intel Fortran 9.1 and later		 Intel Fortran 9.0 	Environment under which the module might operate: gcc 3.4.6 and later, glibc 2.3.4 and later, kernel 2.6.9 and later
64-bit machine	Windows (AMD64/ EM64T)	Windows XP x64	 (1)Fortran Intel Fortran 9.1 and later (2) C / C++ language Microsoft Visual Studio 2005 Microsoft Visual C++ 2005 and later 		•Intel Fortran 9.0	
	Linux (AMD64/ EM64T)	Red Hat Enterprise Linux 4 gcc : 3.4.6 glibc : 2.3.4 kernel : 2.6.9	gcc 3.4.6 Intel Fortran 9.1 and later		 Intel Fortran 9.0 	Environment under which the module might operate: gcc 3.4.6 and later, glibc 2.3.4 and later, kernel 2.6.9 and later

Double-Precision Real Numbers

Calling for In-Core Calculation:

rtc=smsbemd(u, abrs, nstp, a, b, nd, mstp, eps)

Calling for Out-of-Core Calculation:

>rtc=smsbemd_out(u, abrs, nstp, b, nd, mstp, eps)

Argument	Туре	Description
u	real*8	Solution
abrs	real*8	Achieved accuracy in relative residual (L2 norm)
nstp	integer*4	Actual number of iterations
a	real*8	Coefficient matrix <i>A</i> *
b	real*8	Right-hand-side constant vector \boldsymbol{b}
nd	integer*4	Number of unknowns
mstp	integer*4	Maximum number of iterations
eps	real*8	Required accuracy in relative residual (L2 norm)

List	of	Arguments
130	UI.	an Sumence

*Coefficient matrix \boldsymbol{A} is given as a file in case of the Out-of-Core Calculation.

Please refer to the Product Manual for detailed information.

Double-Precision Complex Numbers

Calling for In-Core Calculation:

rtc=smsbemc(u, abrs, nstp, a, b, nd, mstp, eps)

Calling for Out-of-Core Calculation:

>rtc=smsbemc_out(u, abrs, nstp, b, nd, mstp, eps)

Argument	Туре	Description
u	complex*16	Solution
abrs	real*8	Achieved accuracy in relative residual (L2 norm)
nstp	integer*4	Actual number of iterations
a	complex*16	Coefficient matrix A^*
b	complex*16	Right-hand-side constant vector b
nd	integer*4	Number of unknowns
mstp	integer*4	Maximum number of iterations
eps	real*8	Required accuracy in relative residual (L2 norm)

List of Arguments

*Coefficient matrix \boldsymbol{A} is given as a file in case of the Out-of-Core Calculation.

Please refer to the Product Manual for detailed information.

For further information on SMS-BEM such as

- •Benchmark Testing (BMT)
- •Evaluation module
- •Other inquiries

Please contact:

VINAS Co., Ltd. Project Development Dept. Kazuya Goto URL http://www.vinas.com E-mail : sms@vinas.com

