# Super Matrix Solver-BEM(SMS-BEM): 

High-Speed Matrix Solver based on Boundary Element Method dedicated for Dense Matrices

February 2011

VINAS Co., Ltd.<br>Project Development Dept.

URL: http://www.vinas.com

## Special Feature of SMS-BEM

* Dedicated to dense matrices that are generated with boundary element method (BEM).
* Hybrid-Solver with pre-processing based on direct and iterative methods.
- Up to 40 times faster compared with direct method.
* Less memory usage: size of required memory about 1.1 to 1.3 times the size of coefficient matrix $A$.
* Calculation time increase in squares of the size of coefficient matrix $\mathbf{A}$ (c.f. calculation time increase in cubes with direct method)
* Out-of-Core capability with efficient control of Disk I/O
* Adjustable calculation accuracy (iterative method allows for configuration of convergence criteria).

| Items | Descriptions | Notes |
| :---: | :---: | :---: |
| Intended Matrix | Dense matrix generated with Boundary Element Method (BEM) | Full matirx |
| Types of Unknown | Real (double-precision) and Complex Numbers |  |
| Solution Method | Pre-processing + Iterative Method |  |
| Operation <br> Environment | Windows, Linux | For UNIX environment, please contact VINAS. |
| Data Giving Method <br> Out-of-Core Capability | 1. In-Core calculation (with actual memory only): <br> Giving coefficient matrix $\boldsymbol{A}$, right-hand-side vector $\boldsymbol{b}$ as arguments. <br> The result is also returned as arguments. <br> 2. Out-of-Core calculation (with actual memory and disk): <br> Dump the coefficient matrix $\boldsymbol{A}$ once into a file before loading the data. <br> Right-hand-side vector $\boldsymbol{b}$ is given as arguments. Results are also returned as arguments. | 1. for small to medium size problems (with fewer than 14,000 unknowns) <br> 2. for large size problems (that exceeds 14,000 unknowns (2GB RAM real data )s <br> Calculates 14,000 unknowns with 2GB memory on PC! |
| Parameters | 1) Target Convergence <br> 2) Number of Iteration <br> 3) Amount of memory that can be allocated to the solver (in case of Out-of-Core) | 1 and 2 must be assigned because the solution method is based on iterative method. <br> Target convergence is specified as relative residual in L 2 norm. |

SMS-BEM Summary Specification (2)
MV

| Items | Descriptions | Notes |
| :---: | :---: | :---: |
| Other Conditions | 1. Enter coefficient matrix $\boldsymbol{A}$ as 1D array when giving data as arguments. <br> Dump the data so that the ith column and jth element of the coefficient matrix $\boldsymbol{A}$, and the kth element of ID array relate as follows: $\mathrm{k}=(\mathrm{i}-1){ }_{\mathrm{n}} \mathrm{n} \mathrm{j}$ (where n is the number of unknown) <br> 2. When reading from a file, enter the data of coefficient matrix $\boldsymbol{A}$ row by row. | Enter the data row by row in a sequence (enter the elements of the $1^{\text {st }}$ row, then the $2^{\text {nd }}$ row, and so forth). |
| Data Format | DLL Format, Static Library Format | No disclosure of the source code. |
| License Type | Node Lock Type | Available for a fixed machine. |
| Memory Requirement Estimation | For In-Core calculation, memory addition is required that is 0.1 to 0.3 times as large as the size of the coefficient matrix $\boldsymbol{A}$. <br> (i.e. for the matrix size of $\boldsymbol{S}$, the size of required memory is $1.1 \boldsymbol{S}$ to $1.3 \boldsymbol{S}$ ). <br> Out-of Core calculation with small amount of memory (e.g. $1 / 10$ or smaller the size of coefficient matrix $\boldsymbol{A}$ ). However, larger the amount of memory allocated, faster the calculation speed. <br> When the amount of memory allocated is small, the calculation may not converge depending on problems. | Breakthrough in memory requirement that is only 1.1 to 1.3 times the matrix size! |
| Calculation Time | For In-Core calculation, calculation time increase is proportional to the square of the size of coefficient matrix $\left(\mathrm{N}^{2,}\right.$, where N is the number of unknown). | c.f.) calculation time increases in cubes in conventional direct method solver |

## SMS-BEM Calculation Flow



## Pre-Processing

## Iterative Calculation

Calculation Time (sec.)

| LU Decomposition Method | Ratio <br> SMS-BEM |  | Rdirect/Tsms-bem) |
| :---: | :---: | :---: | :---: |
|  | Calculation Time (Tsms-bem) | Convergence |  |
| 195.8 | 7.6 | $1.00 \mathrm{E}-07$ | 26 |
|  | 10.6 | $1.00 \mathrm{E}-15$ | 18 | CPU: Xeon 3.06 GHz Memory: 2GB



## SMS-BEM Calculation Example

EField of Application Electromagnetic Analysis

ESize of Problem 6,000 unknowns

| Direct Method | SMS-BEM |  | Calculation $T_{\text {Time }}$ (sec.) |
| :---: | :---: | ---: | :---: |
| Ratio (Tdirect $T_{\text {snss-bem) }}$ |  |  |  |
| 1404 | 50.14 | $1.00 \mathrm{E}-07$ | 28 |
|  | 69.3 | $1.00 \mathrm{E}-10$ | 20 |
|  | 97.19 | $1.00 \mathrm{E}-13$ | 14 |

ECalculation Environment CPU: Pentium4 1.8 GHz Memory: 1GB


## SMS-BEM Calculation Example

| EField of Application Electromagnetic Analysis | Calculation Time (Min.) |  |  |
| :---: | :---: | :---: | :---: |
|  | Direct Method | SMS-BEM |  |
|  | Calculation Time ( T direct ) | Calculation Time ( $\mathrm{T}_{\text {sms-bem }}$ ) | Convergence |
| Size of Problem 13,000 unknowns | 195 | 3.3 | $1.00 \mathrm{E}-07$ |
|  |  | 4.6 | $1.00 \mathrm{E}-10$ |
|  |  | 6.5 | 1.00E-13 |
| -Calculation Environment CPU: Pentium4 2.4 GHz Memory: 2GB |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| VPD-F11005=06(L1) <br> Copyright©2004-2011 VINAS Co., Ltd. |  |  |  |

Rev A: November 10, 2010

|  | OS | Recommended <br> Environment | Recommended Compiler | Environment for <br> which operation <br> is noted | Compilers for <br> which operation <br> is noted | Remarks |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |

## Double-Precision Real Numbers

## Calling for In-Core Calculation:

$$
>\mathrm{rtc}=\mathrm{smsbemd}(\mathrm{u}, \mathrm{abrs}, \mathrm{nstp}, \mathrm{a}, \mathrm{~b}, \mathrm{nd}, \mathrm{mstp}, \mathrm{eps})
$$

Calling for Out-of-Core Calculation:
$>$ rtc=smsbemd_out ( u, abrs, nstp, b, nd, mstp, eps )

|  | List of Arguments |  |
| :---: | :--- | :--- |
| Argument | Type |  |
| u | real*8 | Solution |
| abrs | real*8 | Achieved accuracy in relative residual (L2 norm) |
| nstp | integer*4 | Actual number of iterations |
| a | real*8 | Coefficient matrix $A^{*}$ |
| b | real*8 | Right-hand-side constant vector $b$ |
| nd | integer*4 | Number of unknowns |
| mstp | integer*4 | Maximum number of iterations |
| eps | real*8 | Required accuracy in relative residual (L2 norm) |

*Coefficient matrix $A$ is given as a file in case of the Out-of-Core Calculation.
Please refer to the Product Manual for detailed information.

## Double-Precision Complex Numbers

Calling for In-Core Calculation:

$$
P_{\mathrm{rtc}}=\mathrm{smsbemc}(\mathrm{u}, \mathrm{abrs}, \mathrm{nstp}, \mathrm{a}, \mathrm{~b}, \mathrm{nd}, \mathrm{mstp}, \mathrm{eps})
$$

Calling for Out-of-Core Calculation:
$>$ rtc $=$ smsbemc_out( $u$, abrs, nstp, b, nd, mstp, eps )
List of Arguments

| Argument | Type | Description |
| :---: | :--- | :--- |
| u | complex*16 | Solution |
| abrs | real*8 | Achieved accuracy in relative residual (L2 norm) |
| nstp | integer*4 | Actual number of iterations |
| a | complex*16 | Coefficient matrix $A^{*}$ |
| b | complex*16 | Right-hand-side constant vector $b$ |
| nd | integer*4 | Number of unknowns |
| mstp | integer*4 | Maximum number of iterations |
| eps | real*8 | Required accuracy in relative residual (L2 norm) |

*Coefficient matrix $A$ is given as a file in case of the Out-of-Core Calculation.
Please refer to the Product Manual for detailed information.

For further information on SMS-BEM such as
-Benchmark Testing (BMT)
-Evaluation module
-Other inquiries

## Please contact:

VINAS Co., Ltd. Project Development Dept.
Kazuya Goto
URL http://www.vinas.com
E-mail :sms@vinas.com

