Super Matrix Solver-P-ICCG:

February 2011

VINAS Co., Ltd.
Project Development Dept.

URL: http://www.vinas.com
$>\underline{I C C G}$ is an iterative solution method for linear equations based on CG (Conjugate Gradient) method. In ICCG, the calculation speed of CG method is enhanced with pre-processing technology (Incomplete Cholesky Factorization). Compared with CG method that has no pre-processing, ICCG method is faster and more stable method.
$\Rightarrow \underline{I C C G}$ is an iterative method with many actual performance results in diverse analyses fields such as structural, electromagnetic and computational fluid dynamic analyses.
>Co-developed with Kyoto University (Academic Center for Computing and Media Studies)
>3 types of parallel algorithm:

- Block-ICCG
\bullet Part-ICCG
- AMC-ICCG (Algebraic Multi-Color Ordering Method)
$>$ Commercialized Block-ICCG with great parallelization effect
>SMP Parallel
Easily parallelized in Windows, UNIX and Linux environment
\star Makes the solver a black box on module basis for ease of use

Performance Comparison of P-ICCG vs. SMS-AMG

P-ICCG
\square
Good
Good
Good
Fair-Good
Fair

SMS-AMG Good
-
-
Excellent Good

NOTE: " = " indicates items that are not accommodated.

User demands:

Greatly speed up specific calculation

P-ICCG Summary Specifications (1)

$>$ Parallel method: accommodates shared memory type (SMP)
$>$ Object coefficient matrices: sparse matrices that are generated from discretizastion methods such as finite element, finite volume, and differential methods.
>Maximum number of CPU's: unlimited; however, 1 to 8 CPU's are recommended.
$>$ Types of unknowns:real and complex numbers
$>$ Symmetry of problems :limited to symmetric problems only (cannot calculate asymmetric problems)
$>$ Zero-diagonal problems: able to calculate ${ }^{1}$

1. cannot solve all of the problems with zero elements in diagonal

P-ICCG Summary Specifications (2)

$>$ Environment: Windows, Unix and Linux (refer to the next page for details)
$>$ Able to be installed into programs written in computer languages such as C and Fortran ${ }^{2}$
2. Installation into programs written in other languages has not yet been confirmed.
$>$ Parameters that can be specified: convergence criteria, number of iteration, initialization condition, and so forth ${ }^{3}$
3. refer to the next page for summary of arguments; refer to the product manual for detailed information.
$>$ Program format: provided in executable module format such as DLL ${ }^{4}$
4. source code will not be disclosed
\Rightarrow Accessories:manual, sample installation data, etc.

	OS	Recommended Environment	Recommended Compiler	Environment for which operation is noted	Compilers for which operation is noted	Remarks

Example: C language

int PICCGD(
 double *X, double *Abrs, int *Nstp, double *AD, double *AU, double *B, int *LNT, int *LND, int ND, int NS, int Mstp, double EPS, int Lop1, int Lu0sw, double GAMMA, int COLOR);

Partial list of arguments (an excerpt from the product manual)

Arguments	Definition (C)	$\begin{aligned} & \text { Definition } \\ & \text { (FORTRAN) } \end{aligned}$	Dimension	Attribute	Meaning of variable (at the time of input)	Meaning of variable (at the time of output)
X	double*	Real*8	Array	I/O	Initial value of unknown \boldsymbol{x} (vector) (when the value of Lu 0 sw is 4)	Solution of unknown \boldsymbol{x} (vector) (the latest value, if not converged.)
Abrs	double*	Real*8	Array	O	Set the storage area for output. (For C language, pass pointers of variables.)	Achieved accuracy (in relative residual)
Nstp	int*	Integer*4	Array	O		Actual number of iteration.
AD	double*	Real*8	Array	I	Values of diagonal elements of matrix A	Values after computation are not guaranteed.
AU	double*	Real*8	Array	I	Values of non-diagonal, non-zero elements in upper half of matrix \boldsymbol{A}.	
B	double*	Real*8	Array	I	Values of right-hand side constant vector \boldsymbol{b}	
LNT	int*	Integer*4	Array	I	Column indices (j) of non-diagonal, non-zero elements in upper half of matrix $A(i, j)$.	
LND	int*	Integer*4	Array	I	Numbers of non-diagonal, non-zero elements in each row of upper half of matrix \boldsymbol{A}.	
ND	int	Integer*4	Value	I	Dimension of matrix \boldsymbol{A}. (= number of unknowns in the simultaneous equations $=$ length of array $\mathrm{X}, \mathrm{B}, \mathrm{AD}$, or LND)	
NS	int	Integer*4	Value	I	Number of non-diagonal, non-zero elements in upper half of matrix A. (= length of array AU or array LNT)	

P-ICCG's Parallel Calculation Performance (1)

>Actual Calculation Time

| Types of Problems Analyzed | Approximate |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | |
| unknowns | | Convergence Time (sec.); target convergence: norm<1.0e-10

Comparison of Calculation Performance
(1 CPU calculation speed as 1)

Types of Problems Analyzee	Approximate	Convergence Time (sec.) target convergence: norm<1.0e-10)			
	number of				
	unknowns	1-CPU	2-CPU	4-CPU	8 -CPU
Magnetic field analysis	220 K	1.0	2.0	3.3	6.5
Fluid analysis	500 K	1.0	1.4	2.4	4.1
Structural analysis	250 K	1.0	1.6	3.1	5.5
Fluid analysis	1000 K	1.0	1.3	2.2	3.7

P-ICCG's Parallel Calculation Performance (2)

Data for Confirmation of P-ICCG's Performance

Calculation Time for P-ICCG Process: Electromagnetic Analysis with JMAG of Japan Research Institute

Data No.	Data Name	Model Dimension	Real/ Complex Number	Dimension	ICCG Calculation Time in hours (Ratio to 1cpu Calculation Time)			
					1cpu	2cpu	4cpu	8 cpu
1	Magnetic Head	3D	Real	647,701	0.70	$\begin{gathered} 0.37 \\ (1.89) \end{gathered}$	$\begin{gathered} 0.24 \\ (2.92) \end{gathered}$	$\begin{gathered} 0.19 \\ (3.68) \end{gathered}$
2	Outer Rotor	2D	Real	148,959	7.42	$\begin{gathered} 5.74 \\ (1.29) \end{gathered}$	$\begin{gathered} 3.17 \\ (2.34) \end{gathered}$	$\begin{gathered} 2.54 \\ (2.92) \end{gathered}$
3	IPM Motor	2D	Real	10,899	0.51	$\begin{gathered} 0.42 \\ (1.21) \end{gathered}$	$\begin{gathered} 0.52 \\ (0.98) \end{gathered}$	$\begin{gathered} 0.26 \\ (1.96) \end{gathered}$
4	Conductor Cable	2D	Real	67,075	0.46	$\begin{gathered} 0.28 \\ (1.64) \end{gathered}$	$\begin{gathered} 0.17 \\ (2.71) \end{gathered}$	$\begin{gathered} 0.13 \\ (3.54) \end{gathered}$
5	Inducing Machine	3D	Complex	385,610	2.01	$\begin{gathered} 2.33 \\ (0.86) \end{gathered}$	$\begin{gathered} 1.55 \\ (1.30) \end{gathered}$	$\begin{gathered} 1.09 \\ (1.84) \end{gathered}$
6	Craw Pole Alternator	3D	Real	769,635	6.59	$\begin{gathered} 3.28 \\ (2.01) \end{gathered}$	$\begin{gathered} 1.70 \\ (3.88) \end{gathered}$	$\begin{gathered} 1.42 \\ (4.64) \end{gathered}$
7	Large Craw Pole Alternator	3D	Real	2,464,702	6.64	$\begin{gathered} 3.03 \\ (2.19) \end{gathered}$	$\begin{gathered} 1.79 \\ (3.71) \end{gathered}$	$\begin{gathered} 1.83 \\ (3.63) \end{gathered}$
8	Transformer	3D	Real	680,448	3.69	$\begin{gathered} 2.21 \\ (1.67) \end{gathered}$	$\begin{gathered} 1.19 \\ (3.10) \end{gathered}$	$\begin{gathered} 0.84 \\ (4.39) \end{gathered}$
9	Rotating Conductor	3D	Real	769,496	9.79	$\begin{gathered} 7.52 \\ (1.30) \end{gathered}$	$\begin{gathered} 4.35 \\ (2.25) \end{gathered}$	$\begin{gathered} 3.30 \\ (2.97) \end{gathered}$

Results of Confirmation of P-ICCG's Performance

Calculation Time for P-ICCG Process: an example of electromagnetic analysis by JMAG of Japan Research Institute

Number of CPU's

Courtesy: Japan Research Institute

Application Example of P－ICCG（ μ－tec Co．，Ltd．）

Verified improvement by applying P－ICCG in calculation speed of μ－MF1

Analysis model／

Analysis result

【Details of Analysis】
Non－linear static magnetic field analysis of
8 －pole 6－slot brushless DC motors
Number of nodes： 194724
Number of elements： 203840
Number of unknowns： 189315
【System environment】
CPU：Xeon 2．4GHz，2GB－Memory
OS：Windows XP
μ－tec Co．，Ltd web site：http：／／www．mutec．org／

For further information on SMS-P-ICCG such as
-Benchmark Testing (BMT)
-Evaluation module
-Other inquiries

Please contact:

VINAS Co., Ltd. Project Development Dept.
Kazuya Goto
URL http://www.vinas.com
E-mail :sms@vinas.com

